
International Journal of Computer Trends and Technology Volume 72 Issue 8, 171-179, August 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I8P125 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Implementing Serverless Computing Architectures for

Expandable and Cost-Effective Cloud Applications
Joel Lopes1, Ceres Dbritto2

1,2Independent Researcher, USA.

1Corresponding Author : joellopes@ieee.org

Received: 30 June 2024 Revised: 31 July 2024 Accepted: 17 August 2024 Published: 31 August 2024

Abstract - An exciting new paradigm in cloud application development, server-less computing promises to be adaptable and

inexpensive. Serve-less architectures allow developers to concentrate on creating value for businesses by removing the need to

maintain the underlying infrastructure. This article provides a thorough framework for developing and deploying server-less

architectures in cloud settings, after which it delves into the fundamental ideas, advantages, and disadvantages of serverless

computing. Research comparing different cloud providers is still in its early stages and has yet to be extensively investigated. In

addition, universally applicable best practices for server-less solutions still need to be improved. Server-less apps' efficiency,

scalability, and performance were tested extensively across several cloud platforms. The findings show that server-less

architectures can deliver high scalability for various workloads, improve resource usage, and drastically reduce operational

overhead. Best practices and future research topics are also presented to maximize the adoption of server-less computing in

real-world applications and solve the constraints.

Keywords - Cloud computing, Cost-efficiency, Function-as-a-service, Micro-services, Scalability, Serverless computing.

1. Introduction
The advent of cloud computing has caused a sea shift in

the app development life cycle. Cloud computing has come a

long way, with traditional models like Infrastructure-as-a-

Service (Iaas) and Platform-as-a-Service (Pass) allowing

businesses to tap into computer resources whenever they need

them [1]. However, the designs' scalability, capacity planning,

and server management still result in substantial operational

overhead.

 A new server-less computing concept has arisen to solve

these problems by removing the need to maintain the

underlying infrastructure [2]. Developers develop and deploy

individual functions in a server-less architecture. Events or

requests trigger these functions. In response to changes in

demand, the cloud service provider automatically scales up or

down the resources used to carry out these tasks. Without

worrying about server provisioning, scalability, or

maintenance, developers can concentrate entirely on building

code and providing business value by utilizing this strategy.

In the last several years, more and more people have opted

for server-less computing. According to research by the Cloud

Native Computing Foundation (CNCF), the percentage of

platforms that do not need servers will rise from 27% in 2018

to 41% in 2020. Just recently, some major cloud providers

have begun offering server-less computing. Amazon Web

Services (AWS) Lambda, Microsoft Azure Functions, and

Google Cloud Functions are three options from various cloud

providers.

Despite its rising profile and advantages, server-less

computing still has factors and problems that must be

resolved. Some examples of these issues include vendor lock-

in, statelessness, function composition, and cold start delay

[4]. Additionally, additional research is needed to determine

how server-less systems operate, scale, and save costs across

various cloud platforms and applications.

 This article aims to thoroughly analyse server-less

computing architectures for efficient and expandable cloud

applications. The following contributions are made by the

manuscript:

• This article comprehensively introduces server-less

computing's ideas, advantages, and disadvantages by

comparing it with more conventional cloud architectures.

• The proposed framework covers essential parts of server-

less architectures, such as function design, event-driven

patterns, and data management.

• Server-less apps' efficiency, scalability, and performance

were tested extensively across various cloud platforms

and workloads.

• Our best practices and suggestions are designed to be

easily implemented in practical settings, helping you

overcome obstacles and make the most of server-less

computing.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

172

Here is a rundown of what is left in the article: The

phrases "server-less computing" and similar ones are defined

in Section II. An introduction to server-less architecture

design and implementation is provided in Part III. Section IV

discusses the methods of assessment and experimental design.

The findings and interpretation of the experiments are detailed

in Section V. Section VI focuses on recommending optimal

practices and highlighting research gaps. The paper is

concluded in Section VII.

2. Background
In serverless computing, computer resources may be

dynamically allocated and provisioned by the cloud provider,

which is one approach to running cloud computing [5]. In

response to events or requests, developers create and release

individual functions, often known as Functions-as-a-Service

(Fa As), in a server-less architecture. The user is only charged

for the resources the cloud provider uses to carry out these

tasks, which are adjusted based on the demand.

The key characteristics of serverless computing include

[6]:

• Developers won't have to stress creating, managing, or

expanding server infrastructure. The provider of cloud

services keeps the customer in the dark about the

infrastructure that supports their services.

• Event-driven execution: Requests or events, including

HTTP requests, database changes, or timer events, trigger

functions.

• Auto-scaling: The application can manage varying traffic

without user intervention because the cloud provider

automatically adjusts the functionality according to

incoming demand.

• Billing based on actual resource consumption: Users are

only charged for the resources utilized when their

functions run, usually in milliseconds of CPU time and

gigabytes of memory.

Figure 1 shows the overall design of a serverless

computing platform. Two primary parts comprise the

platform: the serverless runtime and the serverless trigger. In

reaction to requests or events, the serverless runtime executes

the user-defined functions. Various services and resources

may serve as event sources and trigger routines. These include

object storage, databases, message queues, HTTP requests,

and static timers. In the FIFO sequence, the event queue

records and processes incoming requests. Requests are

assigned to workers for execution by the dispatcher.

2.1. Benefits of Serverless Computing

Serverless computing offers several benefits over

traditional cloud architectures [7]:

• Reduced Operating Expense: Instead of worrying about

server administration, scalability, or maintenance,

developers can concentrate on building code and

providing business value.

• Save money: Instead of paying to provide and maintain

servers, users only pay for the resources they need when

their functions run.

• Cost-efficiency: Users are only billed for the resources

actually used by their tasks, which may lead to significant

cost savings compared to the ongoing costs of server

procurement and maintenance.

• Faster time-to-market: Serverless architectures enable

developers to quickly prototype and deploy new features

and functionality without the need for extensive

infrastructure setup.

• Improved resource utilization: By dynamically allocating

resources based on the incoming workload, serverless

platforms can optimize resource utilization and reduce

wastage.

2.2. Challenges and Considerations

Despite the benefits, server-less computing also presents

several challenges and considerations [8]:

• Cold start latency: Cold start latency is the time it takes

for a function to start up again after being inactive for a

while. This may affect the application's performance,

particularly for workloads that are sensitive to delay.

• Function composition: Serverless functions are typically

designed to be small and focused on a single task.

Composing multiple functions to build complex

workflows can be challenging and may require additional

orchestration mechanisms.

• Statelessness: Because serverless functions are stateless,

you can't expect them to keep any permanent state

between calls. This may be a constraint for applications

that need delicate processing or processes that run for

extended periods.

• Problems with vendor lock-in might arise when using

server-less systems since they are generally dependent on

a single cloud provider. Cloud platforms have various

APIs, tools, and support services, making moving

serverless apps between them difficult.

• Debugging and monitoring: Debugging and monitoring

server-less applications can be more complex compared

to traditional architectures, as the cloud provider manages

the execution environment and may not provide detailed

visibility into the underlying infrastructure.

• Underlying resources could be shared with other users.

Careful consideration and configuration are necessary to

secure and isolate your workload.

3. Designing and Implementing Serve Less

Architectures
In this section, a framework for designing and

implementing serverless architectures for scalable and cost-

effective cloud applications is proposed. The framework

consists of four key aspects: function design, event-driven

patterns, data management, and operational best practices.

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

173

Fig. 1 High-level architecture of a server less computing platform

3.1. Function Design

Designing serverless functions requires a different

mindset compared to traditional monolithic applications.

Functions should be small, focused, and stateless, with a single

responsibility. The following guidelines can help in designing

effective serverless functions [9]:

• Single responsibility: Each function should have a single,

well-defined responsibility and perform a specific task.

This promotes molecularity, re-usability, and

maintainability.

• Statelessness: It is recommended that functions do not

keep any lasting state between calls; statelessness is

known as statelessness. External services, such as

databases or object storage, should hold any necessary

state.

• Input/output contracts: Functions should have well-

defined input and output contracts specifying the

expected data format and structure. This helps in

composing functions and ensures interoperability

between different services.

• Idem potency: Functions should be designed to be

idempotent, meaning that multiple invocations with the

same input will produce the same result. This is important

for ensuring data consistency and handling retries in case

of failures.

• Timeouts and resource limits: Functions should have

appropriate timeouts and resource limits configured to

prevent long-running or resource-intensive tasks from

impacting the overall system performance.

Table 1 summarizes the key considerations for function

design in serverless architectures.

Table 1. Key Considerations for Function Design in Server Less

Architectures

Consideration Description

Single Responsibility
Each function should have a single,

well-defined responsibility.

Stateless
Functions should be designed to be

stateless.

Input/output contracts
Functions should have well-defined

input and output contracts.

Idem potency
Functions should be designed to be

idempotent.

Timeouts and

resource limits

Functions should have appropriate

timeouts and resource limits

configured.

3.2. Event-Driven Patterns

The core concept of server-less architectures is that events

or requests activate functions. By using one of several event-

driven paradigms, you can build server-less apps that are both

Scalable and responsive. [10]:

• Synchronous request/response: This pattern is used when

a client needs to wait for a response from the serverless

function. The client sends a request to the API gateway,

which invokes the corresponding function and waits for

the response before sending it back to the client.

• Asynchronous event processing: In this pattern, functions

are triggered by asynchronous events, such as message

PubSub/Events

BLOB

HTTP

Timer

Serverless

Triggers

E
v

en
t

Q
u

eu
e

D
is

p
at

ch
er

Function Main() {

 Return(payload:

 'Hello World')

}

Code

Code

Code

Code

Code

Code

Worker

Worker

Serverless Runtime

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

174

queue notifications or database updates. The function

processes the event and may perform additional actions,

such as updating other services or sending notifications.

• Fan-out/fan-in: This pattern is used to distribute a single

event to multiple functions for parallel processing and

then aggregate the results. The fan-out phase involves

triggering multiple functions simultaneously, while the

fan-in phase collects and combines the results.

• Choreography: In this pattern, functions are loosely

coupled and communicate with each other through

events. Each function performs its specific task and

publishes events that trigger other functions in the

workflow. This allows for more flexibility and scalability

compared to orchestration-based approaches.

Figure 2 illustrates an example of an event-driven

serverless architecture using the fan-out/fan-in pattern. An

external source, such as a user request or a scheduled job

trigger an event. The event is then distributed to multiple

functions for parallel processing. Each function performs its

specific task and publishes the results to an event bus. Another

function is triggered by the aggregated results, which perform

the final processing before sending the response back to the

client.

Fig. 2 Example of an event-driven serverless architecture using the fan-out/fan-in pattern

3.3. Data Management

Data management in server-less systems requires a

distinct strategy compared to conventional designs. Functions

that do not rely on servers cannot maintain permanent

connections to storage services or databases because they are

stateless and have a limited execution period. Instead,

information needs to be kept in third-party services designed

to handle server-less access patterns. [11].

Some best practices for data management in serverless

architectures include:

• Use managed database services: Amazon DynamoDB,

Microsoft Azure Cosmos DB, and Google Cloud Data

Store are managed database services that might be useful

for server-less applications. With these services, you may

store data in a way that doesn't rely on servers and will be

accessible at all times.

• Decouple data and compute: Serverless functions should

be decoupled from the data storage layer to ensure

scalability and flexibility. Functions should access data

through well-defined API or event-driven patterns rather

than directly connecting to databases.

• Use caching and data replication: To improve

performance and reduce latency, fewer server

applications can use caching and data replication

techniques. Caching can help reduce the number of

requests to the database, while data replication can ensure

that data is available closer to the functions that need it.

• Optimize for eventual consistency: Serverless

architectures often rely on eventual consistency models,

Function

(get upload url)

Function

(resize &

recognize

Image)

Cognitive Services

(Computer Vision)

Blob Storage

(images, thumbnails)

Event Grid

(async events)

Function

(write metadata)

Function

(list images)

Cosmos DB

(image metadata)

Single Page App (SPA)

(static files)

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

175

where data updates may take some time to propagate

across different services or regions. Applications should

be designed to handle eventual consistency and use

appropriate conflict resolution strategies.

3.4. Operational Best Practices

Operating server less architectures requires a different set

of best practices compared to traditional architectures. Some

key operational considerations include:

• Monitoring and logging: Serverless platforms such as

AWS Cloud Watch or Azure Monitor provide built-in

monitoring and logging capabilities. Applications should

leverage these tools to gain visibility into the performance

and health of their functions.

• Error handling and retries: Serverless functions may

experience transient failures due to network issues or

service outages. Applications should implement

appropriate error handling and retry mechanisms to

ensure resilience and reliability.

• Security and access control: Serverless architectures

should follow security best practices, such as using least

privilege access, encrypting sensitive data, and securing

communication channels. Access control mechanisms,

such as AWS IAM or Azure RBAC, should be used to

restrict access to functions and resources.

• Testing and deployment: Testing serverless applications

requires a different approach compared to traditional

architectures. Unit tests should be written for individual

functions, while integration tests should cover the

interactions between functions and services. Deployment

pipelines should be automated and follow best practices,

such as using infrastructure-as-code and canary

deployments.

• Cost optimization: Serverless architectures can provide

significant cost savings, but it's important to monitor and

optimize costs. This includes using appropriate function

memory and timeout settings, leveraging cost-saving

features such as AWS Lambda Reserved Concurrency,

and using cost monitoring tools to identify and address

any unexpected costs.

4. Experimental Setup and Evaluation

Methodology
In this section, experimental setup and evaluation

methodology for assessing the performance, scalability, and

cost-efficiency of serverless architectures across different

cloud platforms and workloads is described.

4.1. Cloud Platforms

This review examines three well-known cloud systems:

GCP, Microsoft Azure, and Amazon Web Services (AWS).

Table II details each platform's server-less capabilities.

Table 2. Serverless offerings of major cloud platforms

Cloud Platform Serverless Offering

AWS AWS Lambda

Azure Azure Functions

GCP Google Cloud Functions

4.2. Workloads

Three representative workloads to evaluate the

performance and scalability of serverless architectures were

considered:

• Web API: This workload represents a typical web

application that exposes a Restful API. The serverless

functions handle HTTP requests, perform simple business

logic, and return JSON responses. The workload is

characterized by short-lived, stateless functions with low

to moderate memory requirements.

• Data Processing: This workload represents a data

processing pipeline that ingests data from a message

queue, performs transformations and aggregations, and

stores the results in a database. The serverless functions

are triggered by messages in the queue and can be long-

running and memory-intensive.

• Machine Learning Inference: This workload represents a

machine learning inference service that receives input

data, runs a per-trained model, and returns the predictions.

The serverless functions are triggered by HTTP requests

and require high-memory and GPU resources for efficient

inference.

4.3. Performance Metrics

The performance of serverless architectures was

evaluated using the following metrics:

• Response Time: The time taken by a serverless function

to process a request and return a response. This includes

the cold start latency and the actual function execution

time. The average, 90th percentile and 99th percentile

response times were measured to assess the overall

performance and tail lateness.

• Throughput: The number of requests that a server less

function can process per second. The maximum

sustainable throughput without causing function failures

or excessive response times was measured.

• Scalability: The ability of a server less architecture to

automatically scale in response to increasing workload.

The scaling behaviour was evaluated by gradually

increasing the request rate and observing the

corresponding changes in response time and throughput.

4.4. Cost Metrics

The cost-efficiency of serverless architectures is assessed

using the following metrics:

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

176

• Cost per Request: The average cost of processing a single

request is calculated by dividing the total cost of function

executions by the number of requests processed. This

metric helps compare the cost-efficiency of different

serverless platforms and configurations.

• Cost per Workload: The total cost of running a specific

workload on a server with less architecture, including the

costs of function executions, data transfer, and storage.

This metric helps assess the overall cost-efficiency of

server less architectures for different workloads.

Table 3. Performance and cost metrics

Table 4. Performance and cost metrics

4.5. Evaluation Methodology

A systematic evaluation methodology was followed to

assess the performance, scalability, and cost-efficiency of

serverless architectures:

• Baseline Measurement: The workloads were deployed on

each cloud platform using their respective serverless

offerings. The baseline performance and cost metrics

were measured under normal load conditions.

• Scalability Testing: The request rate for each workload

was gradually increased, and the scaling behavior of the

server less architectures was observed. The response time,

throughput, and cost metrics at different load levels were

measured to assess the scalability and cost-efficiency.

• Cost Optimization: Different function configurations,

such as memory allocation and timeout settings, to

optimize the cost-efficiency of the server less

architectures were explored. The impact of these

optimizations on performance and cost metrics was

measured.

• Cross-Platform Comparison: Comparative analysis was

done on the performance, scalability, and cost-efficiency

of serverless architectures across different cloud

platforms to identify the strengths and weaknesses of each

platform for specific workloads.

• Results and Analysis: In this section, the results of

experiments are presented, and the performance,

scalability, and cost-efficiency of serverless architectures

across different cloud platforms and workloads are

analyzed.

5. Results
5.1. Web API Workload

Table 3 presents the performance and cost metrics for the

Web API workload on different cloud platforms.

The results show that AWS Lambda provides the lowest

average response time and highest throughput for the Web

API workload, followed closely by GCP Cloud Functions.

Azure Functions has slightly higher response times and lower

throughput compared to the other platforms.

In terms of cost-efficiency, AWS Lambda has the lowest

cost per 1 million requests, making it the most cost-effective

option for the Web API workload. GCP Cloud Functions and

Azure Functions have slightly higher costs, but the differences

are relatively small.

5.2. Data Processing Workload

Table 4 presents the performance and cost metrics for the

Data Processing workload on different cloud platforms.

For the Data Processing workload, AWS Lambda and

GCP Cloud Functions provide similar average processing

times and maximum throughput, with AWS Lambda having a

slight edge. Azure Functions has slightly higher processing

times and lower throughput compared to the other platforms.

In terms of cost-efficiency, AWS Lambda has the lowest

cost per GB of data processed, closely followed by GCP Cloud

Functions. Azure Functions has slightly higher costs for this

workload.

All three platforms show good scalability, with the ability

to process increasing data volumes without significant

increase in processing times.

However, AWS Lambda demonstrates better scalability

at higher throughput levels compared to Azure Functions and

GCP Cloud Functions.

Cloud Platform
Avg Response Time

(ms)

90th

Percentile

(ms)

99th

Percentile

(ms)

Max

Throughput

(freq/s)

Cost per 1M

Requests ($)

AWS 25 50 100 1000 0.20

Azure 30 60 120 800 0.25

GCP 28 55 110 900 0.22

Cloud Platform
Avg Processing

Time (s)

90th

Percentile

(s)

99th

Percentile (s)

Max

Throughput

(MB/s)

Cost per GB

Processed ($)

AWS 5 10 20 100 0.015

Azure 6 12 24 80 0.018

GCP 5.5 11 22 90 0.016

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

177

Table 5. Performance and cost metrics the machine learning inference workload

Fig. 3 Scaling behavior of serverless architectures for the machine learning inference workload

5.3. Machine Learning Inference Workload

 Table 5 presents the performance and cost metrics for the

Machine Learning Inference workload on different cloud

platforms.

For the Machine Learning Inference workload, AWS

Lambda provides the lowest average inference time and

highest throughput, followed by GCP Cloud Functions. Azure

Functions has slightly higher inference times and lower

throughput compared to the other platforms.

In terms of cost-efficiency, AWS Lambda has the lowest

cost per 1 million inferences, making it the most cost-effective

option for this workload. GCP Cloud Functions and Azure

Functions have higher costs, with Azure Functions being the

most expensive.

Figure 3 illustrates the scaling behaviour of the server less

architectures for the Machine Learning Inference workload.

All three platforms demonstrate good scalability, with the

ability to handle increasing request rates. However, AWS

Lambda exhibits better scaling behaviour, maintaining lower

inference times at higher throughput levels compared to Azure

Functions and GCP Cloud Functions.

5.4. Cross-Platform Comparison

Based on the results of experiments, the following

observations regarding the performance, scalability, and cost-

efficiency of serverless architectures across different cloud

platforms were made:

• AWS Lambda consistently demonstrates the best

performance and scalability across all three workloads,

providing the lowest response times, highest throughput,

and best scaling behaviour.

• GCP Cloud Functions closely follows AWS Lambda in

terms of performance and scalability, with slightly higher

response times and lower throughput in some cases.

• Azure Functions generally have higher response times,

lower throughput, and slightly less efficient scaling

compared to AWS Lambda and GCP Cloud Functions.

Cloud Platform Avg Inference

Time (ms)

90th

Percentile

(ms)

99th

Percentile

(ms)

Max

Throughput

(freq/s)

Cost per 1M

Inferences ($)

AWS 100 150 300 200 2.50

Azure 120 180 360 150 3.00

GCP 110 165 330 180 2.75

Start Crawl Lambda

Web Crawler

Step Function State Machine

Crawled Content

S3 Bucket
Kendra

Crawl History

DynamoDB Table

Ephemeral URL Queue

DynamoDB Table

Writes Content

Triggers

Reads and Writes

Deletes When Finished

Reads and Writes

Writes

Creates

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

178

• In terms of cost-efficiency, AWS Lambda provides the

lowest costs for all three workloads, making it the most

cost-effective option overall. GCP Cloud Functions and

Azure Functions have slightly higher costs, with the

differences being more pronounced for the Machine

Learning Inference workload.

These observations suggest that AWS Lambda is the

preferred choice for server less architectures in terms of

performance, scalability, and cost-efficiency. However, the

choice of a serverless platform may also depend on other

factors, such as existing cloud investments, specific platform

features, and ease of integration with other services.

6. Best Practices and Future Research
Based on findings and the current state of serverless

computing, the following best practices and future research

directions are proposed:

6.1. Best Practices

Choose the right server less platform based on

performance, scalability, and cost-efficiency requirements,

considering factors such as existing cloud investments and

integration needs.

• Design serverless functions to be small, focused, and

stateless, following best practices for function

composition, error handling, and resource management.

• Leverage managed services for data storage, message

queuing, and API management to simplify the

architecture and reduce operational overhead.

• Implement proper monitoring, logging, and tracing

mechanisms to gain visibility into the performance and

health of serverless applications.

• Optimize function configurations, such as memory

allocation and timeout settings, to achieve the desired

performance and cost-efficiency trade-offs.

• Encryption, secure communication, and least privilege

access are security best practices that should be followed

to protect server-less applications from potential hazards.

• Pipelines for Continuous Integration and Continuous

Deployment (CI/CD) and infrastructure-as-code may

automate deploying and testing server-less applications.

6.2. Future Research Directions

• Investigating advanced serverless orchestration patterns

and frameworks for composing and coordinating complex

workflows across multiple functions and services.

• Developing efficient mechanisms for handling state and

data consistency in serverless architectures, such as

tasteful serverless computing and distributed transaction

protocols.

• Exploring hybrid serverless architectures that combine

serverless and container-based approaches to achieve the

benefits of both models.

• Investigating performance optimization techniques, such

as function per-warming, to reduce cold start lateness and

improve overall responsiveness.

• Developing cost optimization strategies and tools to help

users monitor and control the costs of serverless

applications in real-time.

• Researching security and privacy aspects of serverless

computing, including access control, data protection, and

compliance with regulations such as GDPR and HIPAA.

• Exploring the integration of serverless computing with

emerging technologies, such as edge computing, machine

learning, and blockchain, to enable new application

scenarios and use cases.

7. Conclusion
In this paper, a comprehensive study on implementing

server less computing architectures for scalable and cost-

effective cloud applications is presented. The key concepts,

benefits, and challenges of serverless computing and the

proposed framework for designing and implementing

serverless architectures are explored.

Through extensive experiments, the performance,

scalability, and cost-efficiency of server less architectures

across different cloud platforms and workloads are evaluated.

Results demonstrate that server less architectures can provide

significant benefits in terms of reduced operational overhead,

improved scalability, and cost-efficiency.

Best practices and future research directions to address

the limitations and optimize the adoption of server less

computing in real-world scenarios are also discussed. As

serverless computing continues to evolve, further

advancements in areas such as orchestration, state

management, performance optimization, and security are

expected.

Overall, serverless computing represents a promising

paradigm for building scalable and cost-effective cloud

applications. By leveraging the benefits of server less

architectures and following best practices, organizations can

unlock new levels of agility, efficiency, and innovation in their

cloud-native application development and deployment.

References
[1] Maciej Malawski et al., “Server Less Execution of Scientific Workflows: Experiments with Hyper Flow, AWS Lambda and Google Cloud

Functions,” Future Generation Computer Systems, vol. 110, pp. 502-514, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Ioana Baldini et al., “Server Less Computing: Current Trends and Open Problems,” Research Advances in Cloud Computing, pp. 1-20,

2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.future.2017.10.029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+execution+of+scientific+workflows%3A+Experiments+with+hyper+flow%2C+AWS+lambda+and+Google+cloud+functions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X1730047X
https://doi.org/10.1007/978-981-10-5026-8_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+Less+Computing%3A+Current+Trends+and+Open+Problems&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1

Joel Lopes & Ceres Dbritto / IJCTT, 72(8), 171-179, 2024

179

[3] CNCF Survey 2020, Cloud Native Computing Foundation, 2020. [Online]. Available: https://www.cncf.io/wp-

content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

[4] J. Schiller-Smith et al., “The Server Less Dilemma: Function Composition for Server Less Computing,” Proceedings of the ACM

Symposium on Cloud Computing, pp. 347-362, 2019.

[5] Paul Castro et al., “The Rise of Server Less Computing,” Communications of the ACM, vol. 62, no. 12, pp. 44-54, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[6] Garrett McGrath, and Paul R. Brenner, “Server Less Computing: Design, Implementation, and Performance,” IEEE 37th International

Conference on Distributed Computing Systems Workshops, Atlanta, GA, USA, pp. 405-410, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[7] Mohit Sewak, and Sachchidanand Singh, “Winning in the Era of Server Less Computing and Function as a Service,” 3rd International

Conference on Computing for Sustainable Global Development, Pune, India, pp. 1169-1175, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Johannes Manner et al., “Cold Start Influencing Factors in Function as a Service,” IEEE/ACM International Conference on Utility and

Cloud Computing Companion, Zurich, Switzerland, pp. 181-188, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[9] Adam Eivy, and Joe Weinman, “Be Wary of the Economics of “Server Less” Cloud Computing,” IEEE Cloud Computing, vol. 4, no. 2,

pp. 6-12, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[10] Vipul Gupta et al., “Over Sketch: Approximate Matrix Multiplication for the Cloud,” IEEE International Conference on Big Data, Seattle,

WA, USA, pp. 298-304, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] Hao Wang, Di Niu, and Baochun Li, “Distributed Machine Learning with a Server Less Architecture,” IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications, Paris, France, pp. 1288-1296, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[12] Rishabh Patil et al., “Server Less Computing and the Emergence of Function-As-A-Service,” International Conference on Recent Trends

on Electronics, Information, Communication & Technology, Bangalore, India, pp. 764-769, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Daniel Kelly, Frank Glavin, and Enda Barrett, “Server Less Computing: Behind the Scenes of Major Platforms,” IEEE 13th International

Conference on Cloud Computing, Beijing, China, pp. 304-312, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[14] Niladri Sekhar Dey, Sana Pavan Kumar Reddy, and G. Lavanya, “Server Less Computing: Architectural Paradigms, Challenges, and

Future Directions in Cloud Technology,” 7th International Conference on I-SCAM (IT in Social, Mobile, Analytic and Cloud) (I-SCAM),

Kiribati, Nepal, pp. 406-414, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Hassan B. Hassan, Saman A. Barakat, and Qusay I. Sarhan, “Survey on Server Less Computing,” Journal of Cloud Computing, vol. 10,

no. 1, pp. 1-29, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Yongkang Li et al., “Server Less Computing: State-of-the-Art, Challenges and Opportunities,” IEEE Transactions on Services Computing,

vol. 16, no. 2, pp. 1522-1539, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Xing Li, Xue Leng, and Yan Chen, “Securing Server Less Computing: Challenges, Solutions, and Opportunities,” IEEE Network, vol. 37,

no. 2, pp. 166-173, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://doi.org/10.1145/3368454
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+rise+of+serverless+computing&btnG=
https://dl.acm.org/doi/10.1145/3368454
https://doi.org/10.1109/ICDCSW.2017.36
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+computing%3A+Design%2C+implementation%2C+and+performance&btnG=
https://ieeexplore.ieee.org/abstract/document/7979855
https://ieeexplore.ieee.org/abstract/document/7979855
https://doi.org/10.1109/I2CT.2018.8529465
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Winning+in+the+era+of+server+less+computing+and+function+as+a+service&btnG=
https://ieeexplore.ieee.org/abstract/document/8529465
https://doi.org/10.1109/UCC-Companion.2018.00054
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cold+start+influencing+factors+in+function+as+a+service&btnG=
https://ieeexplore.ieee.org/abstract/document/8605777
https://doi.org/10.1109/MCC.2017.32
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Be+wary+of+the+economics+of+%22server+less%22+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/7912239
https://doi.org/10.1109/BigData.2018.8622139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Over+sketch%3A+Approximate+matrix+multiplication+for+the+cloud&btnG=
https://ieeexplore.ieee.org/abstract/document/8622139
https://doi.org/10.1109/INFOCOM.2019.8737391
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+machine+learning+with+a+server+less+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/8737391
https://doi.org/10.1109/RTEICT52294.2021.9573962
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+computing+and+the+emergence+of+function-as-a-service&btnG=
https://ieeexplore.ieee.org/abstract/document/9573962
https://ieeexplore.ieee.org/abstract/document/9573962
https://doi.org/10.1109/CLOUD49709.2020.00050
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+computing%3A+behind+the+scenes+of+major+platforms&btnG=
https://ieeexplore.ieee.org/abstract/document/9284261
https://doi.org/10.1109/I-SMAC58438.2023.10290253
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+computing%3A+Architectural+paradigms%2C+challenges%2C+and+future+directions+in+cloud+technology&btnG=
https://ieeexplore.ieee.org/abstract/document/10290253
https://doi.org/10.1186/s13677-021-00253-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+on+server+less+computing&btnG=
https://link.springer.com/article/10.1186/s13677-021-00253-7
https://doi.org/10.1109/TSC.2022.3166553
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Server+less+computing%3A+State-of-the-Art%2C+challenges+and+opportunities&btnG=
https://ieeexplore.ieee.org/abstract/document/9756233
https://doi.org/10.1109/MNET.005.2100335
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+server+less+computing%3A+Challenges%2C+solutions%2C+and+opportunities&btnG=
https://ieeexplore.ieee.org/abstract/document/9933509

